Fiber optic cable assemblies for space flight II: thermal and radiation effects

نویسنده

  • Melanie N. Ott
چکیده

Goddard Space Flight Center is conducting a search for space flight worthy fiber optic cable assemblies that will benefit all projects at all of the NASA centers. This paper is number two in a series of papers being issued as a result of this task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. This paper addresses that need, providing information on cable components shrinkage testing and radiation testing results from recent experiments at Goddard Space Flight Center. This work is an extension of the “lessons learned” reported in the first paper of this series entitled “Fiber Optic Cable Assemblies for Space Flight: Issues and Remedies,” published and presented at the AIAA World Congress in Anaheim CA, on October 15, 1997.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fiber Optic Cable Assemblies for Space Flight Applications III: Characterization of Commercial Cables for Thermal Effects

Introduction This is the third paper in a series of white papers addressing the issues associated with the usage of optical fiber cables in space flight applications.[1-2] These experiments to characterize commercially available optical fiber cables are crucial to deciding which cables are appropriate for which space flight mission based on their environmental performance. The objective of this...

متن کامل

Technology validation of optical fiber cables for space flight environments

Periodically, commercially available (commercial off the shelf, COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are ...

متن کامل

Twelve channel optical fiber connector assembly: from commercial off the shelf to space flight use

The commercial off the shelf (COTS) twelve channel optical fiber MTP array connector and ribbon cable assembly is being validated for space flight use and the results of this study to date are presented here. The interconnection system implemented for the Parallel Fiber Optic Data Bus (PFODB) physical layer will include a 100 /140 micron diameter optical fiber in the cable configuration among o...

متن کامل

Characterization of a twelve channel optical fiber, ribbon cable and MTP array connector assembly for space flight environments

Presented here is the second set of testing conducted by the Technology Validation Laboratory for Photonics at NASA Goddard Space Flight Center on the twelve optical fiber ribbon cable with MTP array connector for space flight environments. In the first set of testing the commercial 62.5/125 cable assembly was characterized using space flight parameters (published in SPIE Vol. 3440 ).[1] The te...

متن کامل

Applications of optical fiber assemblies in harsh environments from NASA Electronic Parts & Packaging (NEPP): The journey past, present, and future

Over the past ten years, NASA has studied the effects of harsh environments on optical fiber assemblies for communication systems, lidar systems, and science missions. The culmination of this has resulted in recent technologies that are unique and tailored to meeting difficult requirements under challenging performance constraints. This presentation will focus on the past mission applications o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003